Climate Change and the Amphibians of Mount Rainier National Park

Photos by Brome McCreary, Ecologist, Forest and Rangeland Ecosystem Science Center

Amphibians of MORA and NOCA

Group	Breeding Habitat	Common Name	Species Name	MORA	NOCA
Frogs – Toads	Streams	Tailed Frog	Ascaphus truei	X	Х
	Ponds – Wetlands	Cascades Frog	Rana cascadae	Х	Х
		Columbia Spotted Frog	Rana luteiventris		Х
		Pacific Treefrog	Pseudacris regilla	Х	Х
		Red-legged Frog	Rana aurora	Х	X
		Western Toad	Anaxyrus boreas	Х	Х
Salamanders	Streams	Pacific Giant Salamander	Dicamptodon tenebrosus	Х	X
	Ponds – Wetlands	Long-toed Salamander	Ambystoma macrodactylum	X	Х
		Northwestern Salamander	Ambystoma gracile	X	Х
		Rough-skinned Newt	Taricha granulosa	X	X
	Terrestrial	Ensatina	Ensatina eschscholtzii	Х	Х
		Larch Mountain Salamander	Plethodon larselli	Х	
		Van Dyke's Salamander	Plethodon vandykei	X	
		Western Red-backed Salamander	Plethodon vehiculum	X	
TOTAL SPECIES				13	11

Amphibian Declines

 Most severe in Australia, Central America, and western USA

• Major Causes:

Habitat alteration and loss
Contaminants (e.g., pesticides, herbicides, fertilizers)
Introduced predators (e.g., fish, bullfrogs)
Diseases (e.g., chytrid fungus Bd, ranavirus)

Amphibians and Climate Change

Amphibian life history and survival especially sensitive to changes in temperature and precipitation

Changes that could impact amphibians:

- Reduction in winter precipitation
 Increase in summer evention
- Increase in summer evaporation
- Reduction of overall soil moisture
- Alteration or loss of suitable aquatic and terrestrial habitat

Climate Change Effects

- Analyses of existing data generally fail to find direct links between climate change and declines
- Correlated Effects:
 - Shift to earlier breeding in some species
 - Increase in El Niño Events =
 - Increase in declines of some Central American species
 - Elevated embryo mortality in some Northwest North American species

Types of Potential Change OVERALL changes: distribution and abundance

• DIRECT changes:

Timing of Migration to Breeding Sites Timing of Oviposition and Metamorphosis Increase in Levels of Physical Stress

INDIRECT changes:

Predators and Competitors Food Supply Habitat Quality and Availability

Contradictory Effects:

Earlier breeding can lead to increase in:

Time for growth & development Probability of survival Reproductive fitness Recruitment

Earlier breeding can also lead to increase in:

Risk of exposure to extreme temperatures Mortality of early life stages

Example:

Survival of Columbia Spotted Frog life stages, Bitterroot Mountains, Montana (McCaffery and Maxell, in review)

Potential Detrimental Effects

 Changes in temperature and precipitation can lead to:

Changes in hydrology and hydroperiod

Earlier drying of temporary & marginally permanent ponds Decrease in the time for growth to successful metamorphosis Decrease in recruitment of individuals into populations

Population decline or eventual extinction

Final Thoughts

- "Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species." (Corn 2005)
- Effects will most probably compound existing impacts
- We are often able to see change in the short-term (the visible present)
- Long term vision, however, requires continuing research and effective monitoring:

USGS Project: Montane amphibian response to climate change: Populations, habitat, and non-native fish management (NOCA, MORA, and Glacier)

Selected References

 Corn, PS. 2005. Climate change and amphibians. Animal Biodiversity and Conservation 28.1:59-67.

- Corn, PS. 2003. Amphibian breeding and climate change: Importance of snow in mountains. Conservation Biology 17:622-625.
- Lawler, JJ, et al. 2009. Projected climate-induced faunal change in the Western Hemisphere. Ecology 90:588-597.
- Carey, C and MA Alexander. 2003. Climate change and amphibian declines: Is there a link? Diversity and Distributions 9:111-121.
- Collins, JP and A Storfer. 2003. Global amphibian declines: Sorting the hypotheses. Diversity and Distributions 9:89-98.

